Prediction and prevention of concrete chloride penetration: machine learning and MICP techniques

Author:

Li Lianqiang,Su Le,Guo Bingchuan,Cai Rongjiang,Wang Xi,Zhang Tao

Abstract

The chloride migration coefficient (CMC) of concrete is crucial for evaluating its durability. This study develops ensemble models to predict the CMC of concrete, addressing the limitations of traditional, labor-intensive laboratory tests. We developed three ensemble models: an inverse variance-based model, an Artificial Neural Network (ANN)-based model, and a tree-based model using the random forest regression algorithm. These models were trained on a dataset comprising 843 concrete mix proportions from existing literature. Results indicate that ensemble models outperform single models such as ANN and Support Vector Regression (SVR) in predicting CMC, with the combined random forest and ANN model showing the highest accuracy. Sensitivity analysis using Shapley Additive Explanations (SHAP) reveals that the CMC is most influenced by the water-to-cement ratio and curing age. Additionally, we designed a graphical user interface (GUI) to facilitate the practical application of our models. This research offers a robust methodology for evaluating concrete durability and potential for extending the prediction to other concrete properties.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3