Effect of Gradation Variability on Volume Parameter and Key Performances of HMA

Author:

Liu Shutang,Zhu Lin,Zhang Huiqin,Liu Tao,Ji Ping,Cao Weidong

Abstract

The graded mineral aggregate composed of coarse aggregate, fine aggregate, and mineral powder is the main component of hot asphalt mixture (HMA), and it occupies a mass ratio of more than 95% in HMA. The gradation variability of mineral aggregate is frequently an unavoidable problem in the construction of asphalt pavement engineering. In order to investigate the effect of gradation variability on the volume parameters and key performances of HMA, the asphalt concrete with a nominal maximum particle size of 20 mm (AC20) was selected as the research carrier. Firstly, a benchmark mineral aggregate gradation (BMAG) was designed based on the theory of dense skeleton gradation presented in the paper. Secondly, six types of HMA (that is, AC20) with variable gradations were also determined and all the specimens were prepared by rotary compaction process with the same optimum asphalt content (gradation varies but asphalt content remains the same), and finally based on asphalt pavement analyzer, the performances of all the specimens of each gradation were tested. The results show that, compared with the BMAG-HMA, the volume parameters such as air voids, voids in mineral aggregate, and voids filled with asphalt of the variable-graded HMA change in different directions, but the water stability and high-temperature performance both degrade greatly. The experimental results also show the feasibility and effectiveness of the dense skeleton gradation design theory adopted in this study.

Publisher

Frontiers Media SA

Subject

Materials Science (miscellaneous)

Reference36 articles.

1. Effect of grading on water stability of AC-13C bituminous Mixture;Cheng;J. Wuhan Univ. Technol. (Transp. Sci. Eng.),2006

2. Level one mix design: materials selection, compaction, and conditioning;Cominsky,1994

3. Evaluating the role of aggregate gradation on cracking performance of asphalt concrete for thin overlays;Garcia-Gil;Appl. Sci,2019

4. Effect of aggregate gradation on rutting of asphalt pavements;Golalipour;Proc. Soc. Behav. Sci,2012

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3