Study on the strength composition mechanism and interface microscopic characteristics of cold recycling asphalt mixture

Author:

Dong Zhao,Xu Guangji,Xu Shudong,Ma Shijie,Ma Tao,Luan Yingcheng,Liu Jiuwei

Abstract

A cold recycling asphalt mixture has significant economic and environmental benefits compared to other pavement material recycling technologies. The cold recycling mixture contains reclaimed asphalt pavement (RAP), new aggregate particles (NAPs), asphalt emulsion, cement, and fillers. The internal material composition is complex, and the interface form is changeable. Both have a significant impact on the mechanical properties. Therefore, this paper aims to study the influence of material composition and related content on the strength performance of a cold recycling mixture from the two aspects of macroscopic mechanical tests and microscopic characteristics analyses. In this paper, the strength evolution law of a cold recycling mixture under changed amounts of cement, emulsified asphalt, and RAP content is carried out. The test result shows that low cement content has little effect on the strength of a cold recycling mixture and is not the main factor affecting its strength composition. The asphalt mainly plays the role of a binder. Compared with the NAPs, the aged asphalt mortar and emulsified asphalt mortar have better interfacial bonding effects. The NAP surface needs more asphalt to form structural asphalt. From the microscopic characteristics of the interfacial transition zone, the cement hydration products and asphalt mortar are intertwined to form a network structure, and the pore structure is filled with asphalt. Compared with the aggregate–asphalt interface, the cement hydration product has poor adhesion with the aggregate. Some micro-cracks are visible in the interface transition zone, which is mainly used as an interface modifier and interface improver to enhance the interface bonding effect.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3