Simulating the giant magnetocaloric effect-from mean-field theory to microscopic models

Author:

Amaral J. S.,Amaral V. S.

Abstract

Magnetocaloric materials are recognized as one of the major classes of magnetic materials for energy applications, and can be either employed as refrigerants in heat-pumping devices, or in thermomagnetic generators for energy conversion/harvesting. For both applications, having a material that presents a first-order magnetic phase transition is advantageous, as this typically leads to enhanced values of magnetization change in temperature (relevant to energy conversion) and of the magnetocaloric effect (relevant to heat-pumping). We present a brief overview of selected models applied to the simulation of applied magnetic field and temperature-dependent magnetization and magnetic entropy change of first-order magnetic phase transition systems, covering mean-field models such as the Landau theory of phase transitions and the Bean-Rodbell model, up to more recent developments using a Ising-like microscopic model with magnetovolume coupling effects. We highlight the fundamental and practical limitations of employing these models and compare predicted thermodynamic properties.

Publisher

Frontiers Media SA

Subject

Materials Science (miscellaneous)

Reference25 articles.

1. Disorder effects in giant magnetocaloric materials;Amaral;Phys. Stat. Sol. A,2014

2. On estimating the magnetocaloric effect from magnetization measurements;Amaral;J. Magn. Magn. Mat.,2010

3. The effect of magnetic irreversibility on estimating the magnetocaloric effect from magnetization measurements;Amaral;Appl. Phys. Lett.,2009

4. Giant magnetocaloric effect of compressible ising and heisenberg lattices;Amaral,2016

5. Thermodynamics of the 2-D ising model from a random path sampling method;Amaral;IEEE Trans. Magn.,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3