Microscopic mechanism study of the creep properties of soil based on the energy scale method

Author:

Yuan Jie,Wang Tao Jin,Chen Jian,Huang jian An

Abstract

The study of the creep properties of soils is of great importance for the management of future settlements and the safe use of buildings. However, starting from the micro level is an effective way to explore the creep mechanism of soft soil. In this paper, the influence of the mineral composition and the mineral content on the structure and creep properties of soft soil was analyzed at the microscopic level and the energy scale method was proposed. Then, the energy scale method was used to analyze and discuss the results of the direct shear creep test. The discussion showed that 1) the average viscosity coefficient of kaolin was greater than that of bentonite, which decreased with an increase of kaolin and bentonite; 2) the thickness of adsorbed water or the double electric layer (DEL) on the particle surface was positively correlated with the soft soil creep; and 3) λ was positively correlated with the adsorbed water content and negatively correlated with the average viscosity coefficient of the soft soil. λ characterized the adsorption capacity of the particles at the micro level; hence, the energy scale method can explain the mechanism of the soft soil creep at the microscopic level and also quantitatively describe the influencing law of the basic characteristics of the particles on the properties of the soft soil creep.

Funder

Basic and Applied Basic Research Foundation of Guangdong Province

Publisher

Frontiers Media SA

Subject

Materials Science (miscellaneous)

Reference25 articles.

1. The transport of silica powders and lead ions under unsteady flow and variable injection concentrations;Bai;Powder Technology

2. Coupled thermo-hydro-mechanical mechanism in view of the soil particle rearrangement of granular thermodynamics;Bai;Computers and Geotechnics

3. Collapse of granular–cohesive soil mixtures on a horizontal plane;Brezzi;Acta Geotechnica,2018

4. Theoretical and experimental investigation on size effect characteristic of strength and deformation of soil;Fang;Rock and Soil Mechanics,2014

5. The kinematics and micro mechanism of creep in sand based on DEM simulations;Gao;Computers and Geotechnics,2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3