Application of phase field model coupled with convective effects in binary alloy directional solidification and roll casting processes

Author:

Zeng Hong Bo,Ai Xin Gang,Chen Ming,Hu Xiao Dong

Abstract

Based on the Kim-Kim-Suzuki (KKS) phase field model coupled with the thermodynamic parameters, the transformation process from columnar dendrites to equiaxed crystals during directional solidification of aluminium alloy was simulated, and the effects of phase field parameters on the growth morphology and dendrite segregation were discussed. Furthermore, considering the effect of the microcosmic flow field, the convection influence gradient term is introduced into KKS formula near the solid-liquid interface, and the phase field model considering flow field was applied to the inherent convective environment of the actual roll casting process, also the multiple dendrites growth behavior of magnesium alloy under the action of microscopic convection was further explored. When coupling calculation of microscopic velocity field and pressure field, the staggered grid method was used to deal with the complex interface. The combined solution of Marker in Cell (MAC) algorithm and phase field discrete calculation was realized. In order to further describe the influence of convection on the solidification process, the roll casting experiments are used to verify the impact growth of multiple dendrites under convection. The results show that the dendrites undergo solute remelting and the dendrites melt into equiaxed crystals, showing the phenomenon of Columnar to Equiaxed Transition (CET).

Funder

National Key Research and Development Program of China

Department of Education of Liaoning Province

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Materials Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3