Modification of polypropylene mesh by titanium compound: An in Vivo and in Vitro study

Author:

Xiao Yelei,He Xinyue,Yang Guang,Li Huanhuan,Zhao Yu,Wang Xuehu

Abstract

Objective: Previous basic studies on the use of titanized polypropylene meshes in abdominal external hernia repair are not only limited, but also highly controversial. This study aims to investigate the modification effect of titanium compounds on polypropylene materials and compare the performance of two kinds of meshes both in vivo and in vitro.Methods: Human peritoneal mesothelial cells (HMrSV5), human epidermal fibroblasts (HSF), and human monocytic cells (THP-1) were cultured in vitro to simulate the abdominal external hernia environment. Titanized polypropylene meshes (Ti) and polypropylene mesh (Non-Ti) were co-cultured with the cells respectively. The effects of titanium compounds on cell growth were determined by cell activity and apoptosis, and the growth of cells on the mesh surface was assessed using a scanning electron microscope and a confocal microscope. In vivo experiments, different sizes titanized polypropylene meshes and polypropylene meshes were placed between the external oblique abdominal muscle and the internal oblique abdominal muscle, the parietal peritoneum, the serous layer of the descending colon, and the underside of the femoral nerve in rabbits. The effects of titanium compounds were evaluated by observing the anti-adhesion, anti-contraction, anti-fibrotic properties, and effects on nerves of the mesh.Results: Titanium compounds effectively reduced the effects of polypropylene material on cell growth, and improved the fixation and adhesion of HMrSV5, HSF and THP-1 (M0) on the surface of titanized polypropylene meshes. Furthermore, titanium compounds improved the adhesion, contraction and fibrosis of polypropylene material, as well as reduced nerve damage. This improvement demonstrated a regular trend with the type of titanized polypropylene meshes.Conclusion: The titanium compounds improved the biocompatibility of the polypropylene material, which was conducive to the fixation and adhesion of cells on the surface of the meshes, and alleviated the adhesion and contraction of the meshes, and the degree of tissue fibrosis, as well as the influence on nerves.

Publisher

Frontiers Media SA

Subject

Materials Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3