Strength variation characteristics of waste tailings cemented backfill materials with ultrafine particles

Author:

Deng Daiqiang,Wang Ye,Liang Yihua,Fan Jinkuan,Gao Yu,Ma Yunfan

Abstract

This study investigates the use of self-produced solid waste in mines to backfill the goaf, with energy saving and emission reduction technology requirements. Using a relevant backfill mixing proportion test and mechanical property test, we analyzed the strength variation law of backfill materials under different concentrations and cementation powder addition. The results showed that, for backfill materials at 7 days with an ash-tailings ratio of 1:6, the strength of specimens with 52% and 49% prepared concentrations, respectively, increased by 1.361 and 1.266 times over specimens with 49% and 46% concentrations. For backfill materials with 49% prepared concentrations and ash-tailings ratios of 1:6, 1:9, and 1:12, the specimen strength of the backfill materials with ratios of 1:6 and 1:9 improved by 0.616 MPa and 0.321 MPa—109.28% and 114.6%, respectively—compared with 1:9 and 1:12 backfill materials at 60 days. It is thus evident that the quantity of binding materials added plays a critical function in improving the strength of backfill materials, and in the subsequent application of goaf backfill. The strength of backfill materials can be enhanced by improving the gradation of backfill aggregates and increasing the amount of binding materials so as to achieve cost reductions and sustainable development.

Publisher

Frontiers Media SA

Subject

Materials Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3