Preservation of Titanium in a Naringin-Containing Solution to Enhance Osteogenic and Anti-inflammatory Activities In Vitro

Author:

Chen Wei,Zhu Wen-qing,Su Shan,Liu Yao,Qiu Jing

Abstract

When exposed to air, the titanium implants undergo changes in surface characteristics and biological activity, which is known as biological aging. It is important to find a suitable storage method to slow down the biological aging of titanium. The purpose of this study was to develop a naringin-containing storage solution and evaluate the effects of this storage method on physicochemical properties as well as osteogenic and anti-inflammatory activities of commercial pure titanium (cp-Ti) and sandblasted with large grit and acid-etched titanium (SLA-Ti). Titanium surfaces stored in air and 0.9% NaCl solution for 4 weeks were served as control, and samples submerged in three different concentrations of naringin-containing solution for 4 weeks were used to investigate the new storage method. Surface topography images showed that nanostructures were observed on liquid-stored SLA-Ti surfaces. The storage condition did not influence the roughness of both cp-Ti and SLA-Ti. However, the wettability of titanium varied with the storage methods. Titanium stored in the naringin-containing solution exhibited lower contact angles. Samples stored in aqueous solution were less susceptible to hydrocarbon contamination. The preservation of titanium in the 10 μM naringin-containing solution enhanced the adhesion, proliferaton, and differentiation of osteoblasts. In addition, macrophages on samples stored in 10 μM and 100 μM naringin-containing solutions displayed better anti-inflammatory effect. In summary, the 10 μM naringin-containing solution could enhance osteogenic and anti-inflammatory activities of titanium and was proved to be an effective new storage condition.

Funder

National Natural Science Foundation of China

Jiangsu Provincial Key Research and Development Program

Publisher

Frontiers Media SA

Subject

Materials Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3