Multi-Objective Optimization Methods for Designing Low-Carbon Concrete Mixtures

Author:

DeRousseau M.A.,Kasprzyk J.R.,Srubar W.V.

Abstract

Concrete mixtures are complex material systems with a multitude of characteristics that decision-makers may deem important. These characteristics can include economic, environmental, mechanical, and durability-related properties of a concrete mixture. However, traditional concrete mixture design typically employs long-standing heuristics, which satisfy requirements for physical characteristics but are unable to minimize specific characteristics, such as the cost or carbon footprint of the concrete mixture. This work considers these performance characteristics by implementing simulation-optimization as a new paradigm for designing concrete mixtures. The utility of the simulation-optimization framework is tested for several concrete design case studies that simultaneously consider compressive strength, embodied carbon, service life, and cost. Results from these scenarios demonstrate that the local conditions of the case study dictate the most important parameters of the simulation-optimization (i.e., relative constituent costs, in situ service-life conditions). Out of all other parameters, constituent cost and service-life conditions impact the set of optimal concrete mixture designs in terms of the types and quantities of mixture ingredients that are utilized. We present a simulation-optimization framework that is demonstrated herein to be a holistic design tool that allows designers to quantify and visualize tradeoffs between critical concrete performance metrics. Such a tool can be used to precision-tailor low-carbon concrete mixtures to the exact preferences of the designer.

Funder

National Science Foundation

Publisher

Frontiers Media SA

Subject

Materials Science (miscellaneous)

Reference34 articles.

1. 2012 Edition - Portland Cement Concrete Pavement, Section 450. Alabama Department of Transportation2012

2. Prediction and Multi-Objective Optimization of High-Strength Concrete Parameters via Soft Computing Approaches;Baykasoğlu;Expert Syst. Appl.,2009

3. Effects of Silica Fume Addition and Water to Cement Ratio on the Properties of High-Strength Concrete after Exposure to High Temperatures;Behnood;Cement Concrete Composites,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3