Darcy–Benard–Oldroyd convection in anisotropic porous layer subject to internal heat generation

Author:

Swamy Mahantesh S.,Hanumagowda B. N.,Khan Umair,Vidyashree K.,Hassan Ahmed M.,Mohammed Saeed Abdulkafi,Kumar Ranvijay

Abstract

An anisotropic horizontal porous layer saturated with viscoelastic liquids of the Oldroyd-B type is explored to determine how the internal heat source affects thermal convection. As a momentum equation, a modified Darcy–Oldroyd model is used that takes into account the anisotropy of the porous layer. The energy equation is formulated in such a way that the influence of internal heat sources and anisotropy in thermal diffusivity on the stability criterion may be easily identified. The effects of anisotropy, viscoelasticity, and internal heat generation on the onset of thermal convection are investigated using linear stability analysis. It is understood that convection begins via an oscillatory mode instead of a stationary mode because viscous relaxation, thermal diffusions, and internal heat generation mechanisms compete with one another. Both steady and unsteady finite-amplitude convections are studied using nonlinear stability analysis with the truncated Fourier series method. The effect of different governing parameters on the system’s stability and on convective heat transfer is studied. The present investigation has been significantly validated by the recovery of several prior results as special situations. The findings presented in this work are anticipated to have significant implications for a number of real-world applications, including modeling of oil reservoirs, crude oil extraction, crystal growth, the pharmaceutical and medical industries, and the use of geothermal energy, among others.

Publisher

Frontiers Media SA

Subject

Materials Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3