The Verification of Thermoelectric Performance Obtained by High-Throughput Calculations: The Case of GeS2 Monolayer From First-Principles Calculations

Author:

Wang Xiaolian,Feng Wei,Shen Chen,Sun Zhehao,Qi Hangbo,Yang Mao,Liu Yonghui,Wu Yuchen,Wu Xiaoqiang

Abstract

Electronic fitness function (EFF, achieved by the electrical transport properties) as a new quantity to estimate thermoelectric (TE) performance of semiconductor crystals is usually used for screening novel TE materials. In recent years, because of the high EFF values, an increasing number of two-dimensional materials have been predicted to have the potential for TE applications via high-throughput calculations. Among them, the GeS2 monolayer has many interesting physical properties and is being used for industrial applications. Hence, in this work, we systematically investigated the TE performance, including both electronic and thermal transport properties, of the GeS2 monolayer with first-principles calculations. The results show that the structure of the GeS2 monolayer at 700 K is thermally unstable, so we study its TE performance only at 300 and 500 K. As compared with other typical TE monolayers, the GeS2 monolayer exhibits excellent electronic transport properties but a relatively high lattice thermal conductivity of 5.71 W m−1 K−1 at 500 K, and thus an unsatisfactory ZT value of 0.23. Such a low ZT value indicates that it is necessary to consider not only the electron transport properties but also the thermal transport properties to screen the thermoelectric materials with excellent performance through high-throughput calculations.

Publisher

Frontiers Media SA

Subject

Materials Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3