Effect of a Fast Potential Change on the Early Stage of Zinc Passivation in a Saturated Calcium Hydroxide Solution

Author:

Garnica-Rodríguez Armando,Montoya R.,Rodríguez-Gomez Francisco Javier,Pérez-López Tezozomoc,Genesca Juan

Abstract

The fast and sharp corrosion potential change from the active state to the passive state, that pure zinc plates immersed in calcium hydroxide saturated solutions with and without chlorides spontaneously exhibit at the early stage of passivation, was studied. The corrosion behavior was investigated by corrosion potential monitoring, anodic polarization curves and electrochemical impedance spectroscopy. The zinc surface was characterized by scanning electron microscopy and X-ray energy dispersive spectroscopy. Experimental results show that the presence of chlorides increases the rate of change of potential by 10-fold in the early stage of passivation, producing a porous passivating film of corrosion products mainly made of calcium hydroxy-zincate Ca(Zn(OH)3)2· 2 H2O, with a less protective barrier effect than the non-porous film formed without chlorides. On the other hand, a modeling approach was achieved by solving the transient 2D Nernst–Planck equations and considering 12 chemical species. Numerical results confirm that the composition of the chemical products generated on the Zn surface certainly depends on the concentration of Cl¯ ions: Simonkolleite and hidroxides become unstable in the presence of high Cl¯ concentrations, whereas calcium hydroxyl-zincate is the main chemical compound generated on the Zn surface. However, the presence of the latter compound is much more important in electrolytes with very low concentration of Cl¯ ions.

Funder

Consejo Nacional de Ciencia y Tecnología

Dirección General de Asuntos Del Personal Académico, Universidad Nacional Autónoma de México

Publisher

Frontiers Media SA

Subject

Materials Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3