Author:
Garnica-Rodríguez Armando,Montoya R.,Rodríguez-Gomez Francisco Javier,Pérez-López Tezozomoc,Genesca Juan
Abstract
The fast and sharp corrosion potential change from the active state to the passive state, that pure zinc plates immersed in calcium hydroxide saturated solutions with and without chlorides spontaneously exhibit at the early stage of passivation, was studied. The corrosion behavior was investigated by corrosion potential monitoring, anodic polarization curves and electrochemical impedance spectroscopy. The zinc surface was characterized by scanning electron microscopy and X-ray energy dispersive spectroscopy. Experimental results show that the presence of chlorides increases the rate of change of potential by 10-fold in the early stage of passivation, producing a porous passivating film of corrosion products mainly made of calcium hydroxy-zincate Ca(Zn(OH)3)2· 2 H2O, with a less protective barrier effect than the non-porous film formed without chlorides. On the other hand, a modeling approach was achieved by solving the transient 2D Nernst–Planck equations and considering 12 chemical species. Numerical results confirm that the composition of the chemical products generated on the Zn surface certainly depends on the concentration of Cl¯ ions: Simonkolleite and hidroxides become unstable in the presence of high Cl¯ concentrations, whereas calcium hydroxyl-zincate is the main chemical compound generated on the Zn surface. However, the presence of the latter compound is much more important in electrolytes with very low concentration of Cl¯ ions.
Funder
Consejo Nacional de Ciencia y Tecnología
Dirección General de Asuntos Del Personal Académico, Universidad Nacional Autónoma de México
Subject
Materials Science (miscellaneous)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献