Author:
Kovacs Alexander,Fischbacher Johann,Oezelt Harald,Kornell Alexander,Ali Qais,Gusenbauer Markus,Yano Masao,Sakuma Noritsugu,Kinoshita Akihito,Shoji Tetsuya,Kato Akira,Hong Yuan,Grenier Stéphane,Devillers Thibaut,Dempsey Nora M.,Fukushima Tetsuya,Akai Hisazumi,Kawashima Naoki,Miyake Takashi,Schrefl Thomas
Abstract
Rare-earth elements like neodymium, terbium and dysprosium are crucial to the performance of permanent magnets used in various green-energy technologies like hybrid or electric cars. To address the supply risk of those elements, we applied machine-learning techniques to design magnetic materials with reduced neodymium content and without terbium and dysprosium. However, the performance of the magnet intended to be used in electric motors should be preserved. We developed machine-learning methods that assist materials design by integrating physical models to bridge the gap between length scales, from atomistic to the micrometer-sized granular microstructure of neodymium-iron-boron permanent magnets. Through data assimilation, we combined data from experiments and simulations to build machine-learning models which we used to optimize the chemical composition and the microstructure of the magnet. We applied techniques that help to understand and interpret the results of machine learning predictions. The variables importance shows how the main design variables influence the magnetic properties. High-throughput measurements on compositionally graded sputtered films are a systematic way to generate data for machine data analysis. Using the machine learning models we show how high-performance, Nd-lean magnets can be realized.
Funder
Christian Doppler Forschungsgesellschaft
Ministry of Education, Culture, Sports, Science and Technology
Agence Nationale de la Recherche
Subject
Materials Science (miscellaneous)
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献