Transition of electrochemical measurement to machine learning in the perspective of two-dimensional materials

Author:

Jitapunkul Kulpavee,Chenwittayakhachon Apiphu,Iamprasertkun Pawin

Abstract

Two-dimensional materials (e.g. graphene, and transition metal dichalcogenides) have become ubiquitous in electrochemical contexts including energy storage, electrocatalyst, and ion-selective membranes. This is due to its superior electrochemical properties, specifically “capacitance”, which can be referred to the storage ions at the electrolyte/materials interfaces. Experimental work and computational chemistry were carried out in the past decade for solving and improving the understanding of two-dimensional materials; however, these techniques are relatively expensive, complex, and time-consuming. Therefore, we accentuate the future trend of two-dimensional material study with machine learning as the modest alternative. In this perspective, the intrinsic capacitance properties of the two dimension materials were described from an atomic level, explaining the heteroatom doping to a nanoscopic level, showing (basal vs edge capacitance). The studies also extended to the macroscopic level i.e., the flake size of the two-dimensional materials. We then shed more light on the applicability of machine learning coupled with the “fundamental measurement” for solving electrochemistry of two-dimensional materials. The shallow artificial neural network was demonstrated for the prediction of CV curves using the data from size-dependent graphene. In addition, the application of deep neural networks with complicated architecture has also been explored through the prediction of capacitance for heteroatom-doped graphene. This perspective provides a clear background and creates the connection between fundamental measurement and machine learning for understanding the capacitance properties of two-dimensional materials.

Funder

Thammasat University

Sirindhorn International Institute of Technology, Thammasat University

Publisher

Frontiers Media SA

Subject

Materials Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3