Control Mechanism of Particle Flow in the Weak Liquid Metal Flow Field on Non-Uniform Curvature Surface Based on Lippmann Model

Author:

Zhang Li,Zheng Bingjun,Xie Yi,Ji Renquan,Li Yanbiao,Mao Wenbing

Abstract

In order to realize the uniform distribution in the abrasive flow polishing of the titanium alloy workpiece with curved surface, a novel method based on the liquid metal-abrasive flow machining technology is proposed in this study. Based on the SST k-ω model, Preston model and fluid flow particle tracking model, the COMSOL software is employed to study the dynamic characteristics of liquid metal-abrasive flow under different AC electric field conditions, and the two-phase flow field is used to simulate the liquid state, the movement of liquid metal particles on the surface of the workpiece and the varitation of the Pv value in the near-wall region. It is found from numerical simulation results that the average Pv value in the strong flow field is 23,718.8 W/m2, and that in the weak flow field is 5,427.3 W/m2. By the assistance of the electric filed with the voltage of AC 36 V, the average Pv value of the liquid metal particles in the weak flow field is found to be 10,948.6 W/m2 with an increase of 101.7%. Therefore, to properly control the electric field strength, the movement of liquid metal in the flow field can be found to be controlled, and hence improving the uniformity of the turbulent kinetic energy on the workpiece surface and improving the processing quality.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Zhejiang Province

National Key Research and Development Program of China

Publisher

Frontiers Media SA

Subject

Materials Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3