Magnetic-Optic Effect-Based Topological State: Realization and Application

Author:

Wang Xinyue,Zhao Wen,Zhang Hongyu,Elshahat Sayed,Lu Cuicui

Abstract

The topological state in photonics was first realized based on the magnetic-optic (MO) effect and developed rapidly in recent years. This review summarizes various topological states. First, the conventional topological chiral edge states, which are accomplished in periodic and aperiodic systems based on the MO effect, are introduced. Some typical novel topological states, including valley-dependent edge states, helical edge states, antichiral edge states, and multimode edge states with large Chern numbers in two-dimensional and Weyl points three-dimensional spaces, have been introduced. The manifest point of these topological states is the wide range of applications in wave propagation and manipulation, to name a few, one-way waveguides, isolator, slow light, and nonreciprocal Goos–Hänchen shift. This review can bring comprehensive physical insights into the topological states based on the MO effect and provides reference mechanisms for light one-way transmission and light control.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Materials Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3