Porous single crystalline-like titanium dioxide monolith with enhanced photoelectrochemical performance

Author:

Liu Kaipeng,Cheng Fangyuan,Luo Yunfei,Liu Ling,Wang Changtao,Xie Kui,Luo Xiangang

Abstract

Macro-sized porous single crystalline-like (PSC-like) TiO2 is endowed with unique structural advantages due to its structural consistency and porosity in a large area, which would significantly enhance its photoelectrochemical function. However, there are significant technical challenges in the growth of porous single crystalline-like monoliths. The consistency of structure dominates the structure so that the grain boundary is reduced to the minimum, which is in contradiction with the three-dimensional percolation structure. Here we report a lattice reconstruction strategy based on solid-solid transformation to grow porous single crystal-like anatase TiO2 dominated by (200) and (101) facets at 2 cm scale. In comparison with the traditional definition of porous single crystal, it has two different lattice orientations, but still has good photoelectrochemical properties. The band gap engineering introduces Ti3+ gap into the lattice to generate TinO2n−1 with Magneli phase, limiting the created active structure to the lattice with two-dimensional surface, which would open a new avenue to create highly active surfaces to capture photons and transport electrons stably. The PSC-like TinO2n−1 provides enhanced exciton lifetime (3–5 ns) as a photocatalytic catalyst and shows significant visible light absorption. The independent PSC-like TinO2n−1 delivers high photocurrent of 1.8–5.5 mA · cm−2 at room temperature and does not decay for 10 h.

Publisher

Frontiers Media SA

Subject

Materials Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3