Influence of aggregate chemical composition on the demulsification rate of emulsified asphalt

Author:

Tan Wei,Zhu Songxiang,Kong Lingyun,Peng Yi,Xu Lei,Fu Yaoguo

Abstract

Efficient demulsification is vital for the application of emulsified asphalt in road construction. In this paper, the effects of the main chemical components of the aggregates (CaCO3, MgO, Fe2O3, SiO2, Al2O3) on the demulsification process of emulsified asphalt were studied by experiment and simulation using a Gompertz model. The findings indicate that the surface energy, specific surface area, and pH of the chemical components of the aggregates are the most important factors influencing the demulsification speed of the emulsified asphalt. The choice of the aggregate’s main chemical components can accelerate demulsification speed, with the acceleration effect of Al2O3 on anionic (SDBS) emulsified asphalt and MgO on cationic (STAC) emulsified asphalt both reaching 60%. The fit between the Gompertz model and the experimental viscosity curve is greater than 0.93, which verifies the utility of using the Gompertz approach for studying emulsified asphalt-aggregate mortar viscosity changes. A demulsification evaluation function φ(t) of emulsified asphalt is proposed based on the parameters of the Gompertz model. When φ(t) is close to 1, the emulsified asphalt-aggregate mortar is fully demulsified, and setting φ(t)=1 allows the demulsification time of the emulsified asphalt-aggregate mortar to be calculated from the Gompertz model parameters.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Materials Science (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3