Emulating quantum dynamics with neural networks via knowledge distillation

Author:

Yao Yu,Cao Chao,Haas Stephan,Agarwal Mahak,Khanna Divyam,Abram Marcin

Abstract

We introduce an efficient training framework for constructing machine learning-based emulators and demonstrate its capability by training an artificial neural network to predict the time evolution of quantum wave packets propagating through a potential landscape. This approach is based on the idea of knowledge distillation and uses elements of curriculum learning. It works by constructing a set of simple, but rich-in-physics training examples (a curriculum). These examples are used by the emulator to learn the general rules describing the time evolution of a quantum system (knowledge distillation). We show that this emulator is capable of learning the rules of quantum dynamics from a curriculum of simple training examples (wave packet interacting with a single rectangular potential barrier), and subsequently generalizes this knowledge to solve more challenging cases (propagation through an arbitrarily complex potential landscape). Furthermore, we demonstrate, that using this framework we can not only make high-fidelity predictions, but we can also learn new facts about the underlying physical system, detect symmetries, and measure relative importance of the contributing physical processes.

Publisher

Frontiers Media SA

Subject

Materials Science (miscellaneous)

Reference55 articles.

1. Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions;Alzubaidi;J. Big Data,2021

2. Learning in high dimension always amounts to extrapolation;Balestriero,2021

3. Unveiling the predictive power of static structure in glassy systems;Bapst;Nat. Phys.,2020

4. Curriculum learning;Bengio,2009

5. Learning long-term dependencies with gradient descent is difficult;Bengio;IEEE Trans. Neural Netw.,1994

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3