Author:
Jiang Yao,Gu Rui Cong,Wang Jing Tao,Xiao Qiang-Qiang,Huang Zheng-Xiang
Abstract
The grain size effect on the shaped charge jet (SCJ) stretching process was analytically formulated and experimentally verified by penetration tests. The present analytical model predicts an optimum grain size for the SCJ performance, deduced from the concurrent effect of grain size on flow stress, strain rate sensitivity, and surface roughness. Specifically, reducing the grain size will improve the initial surface roughness and decrease the initial perturbation amplitude, favoring the SCJ stretching. On the other hand, the strain rate sensitivity and flow stress for copper increase with the decrease of grain size, facilitating the perturbation growth and leading to a premature breakup. Thus, the present analytical model predicts that the optimum grain size of the SCJ is about 1–5 μm. The penetration test verified that the shaped charge liner with an average grain size of about 3.6 ± 2.5 μm exhibited the largest penetration depth. The consistent results from the analytical model and the penetration experiments certify the feasibility of the present analytical model on the SCJ performance.
Funder
National Natural Science Foundation of China
Subject
Materials Science (miscellaneous)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献