Application of machine learning algorithms to evaluate the influence of various parameters on the flexural strength of ultra-high-performance concrete

Author:

Qian Yunfeng,Sufian Muhammad,Hakamy Ahmad,Farouk Deifalla Ahmed,El-said Amr

Abstract

The effect of various parameters on the flexural strength (FS) of ultra-high-performance concrete (UHPC) is an intricate mechanism due to the involvement of several inter-dependent raw ingredients. In this digital era, novel artificial intelligence (AI) approaches, especially machine learning (ML) techniques, are gaining popularity for predicting the properties of concrete composites due to their better precision than typical regression models. In addition, the developed ML models in the literature for FS of UHPC are minimal, with limited input parameters. Hence, this research aims to predict the FS of UHPC considering extensive input parameters (21) and evaluate each their effect on its strength by applying advanced ML approaches. Consequently, this paper involves the application of ML approaches, i.e., Support Vector Machine (SVM), Multi-Layer Perceptron (MLP), and Gradient Boosting (GB), to predict the FS of UHPC. The GB approach is more effective in predicting the FS of UHPC precisely than the SVM and MLP algorithms, as evident from the outcomes of the current study. The ensembled GB model determination coefficient (R2) is 0.91, higher than individual SVM with 0.75 and individual MLP with 0.71. Moreover, the precision of applied models is validated by employing the k-fold cross-validation technique. The validity of algorithms is ensured by statistical means, i.e., mean absolute error and root mean square errors. The exploration of input parameters (raw materials) impact on FS of UHPC is also made with the help of SHAP analysis. It is revealed from the SHAP analysis that the steel fiber content feature has the highest influence on the FS of UHPC.

Publisher

Frontiers Media SA

Subject

Materials Science (miscellaneous)

Reference125 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3