Photoresponsive Piezoelectrics

Author:

Bai Yang

Abstract

Most piezoelectric materials are not interactive with visible light, meaning that their band gaps are beyond the photon energies of the visible part of the light spectrum. The first narrow band gap (1.1 eV, the same as silicon) ferroelectric material based on the oxide perovskite structure has been achieved by doping Ni on the B-sites of KNbO3 and paring the Ni2+ ions with oxygen vacancies to form defect dipoles to ease the band-band transition. This band gap engineered ferroelectric material has also been proved to be piezoelectric. The Ni-doping strategy for band gap engineering has been successfully applied to other perovskite compositions. As a result, several materials with simultaneously good piezoelectricity and a visible-range band gap have been developed. Such photoresponsive piezoelectrics have potential applications in opto-electrical dual-source actuators, single-material multi-sensors and multi-source energy harvesters. This mini review focuses on the works of simultaneous tuning of piezoelectricity and band gap, which have not previously been discussed as an individual topic in existing reviews. Pioneer works on the applications of photoresponsive piezoelectrics are also presented. Since most of such materials are built on the frame of lead-free perovskite oxides, their band gap (without degrading the piezoelectricity) provides an additional benefit to environmentally friendly lead-free piezoelectrics (compared to lead-based counterparts such as PZT [Pb(Zr,Ti)O3)]. This review aims to draw the attention of piezoelectric scientists and device engineers, so that potential applications of photoresponsive piezoelectrics can be comprehensively investigated, as well as more material options that can be offered in future works.

Funder

Academy of Finland

Publisher

Frontiers Media SA

Subject

Materials Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3