A two-stage model updating method for the linear parts of structures with local nonlinearities

Author:

Zhang Hao,Wei Desheng,Zhai Lei,Hu Lixin,Li Liulian,Qin Huilai,Li Dongsheng,Fan Jiansheng

Abstract

Finite element model updating provides an important supplement for finite element modelling. However, some studies have shown that if the tested structure involves local nonlinearities due to damages, material properties and large deformation et al., it is difficult to achieve an accurate modified model using conventional model updating methods that are based on the assumption of linear structures. To address this issue, a two-stage model updating method separating the effects of local nonlinearities is proposed in this paper. Firstly, the underlying linear frequency response function is obtained by using the conditioned reverse path method. Then, combined with the Sherman-Morrison-Woodbury formula and the model updating objective function established by the frequency response function similarity metric, then structural model updating and damage detection are carried out as the second stage. Three numerical examples are given to illustrate the effectiveness of the proposed method. This method can not only accurately identify the location and quantify the extent of structural damages, but also has the advantages of not based on sensitivity, not depending on the selection of frequency points, not repeatedly calling the initial model et al. The proposed method has high computational efficiency and avoids the numerical problems often encountered by conventional frequency response function-based model updating methods.

Publisher

Frontiers Media SA

Subject

Materials Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3