Secondary consolidation characteristics of organic soil modified by bio-enzyme based on the Gibson model

Author:

Zhang Yixin,Wen Changping

Abstract

In order to study the secondary consolidation characteristics of organic soil improved by bio-enzyme, the secondary consolidation test was carried out. First, the Gibson rheological model parameters were fitted according to the experimental results. Then, the relationship between rheological model parameters, Ca/Cc value, secondary consolidation coefficient Ca, and load was analyzed for different ratios of bio-enzyme. The results showed that: 1) the rheological model parameters were negatively correlated with the ratios of bio-enzyme and positively correlated with the load value. The rheological model parameters E1 (Kelvin elastic modulus) and η (Kelvin viscosity coefficient) reached the maximum value when the ratio of bio-enzyme was 0.01%. 2) The secondary consolidation coefficient was related to the load and showed a certain law. At 100 kPa, the secondary consolidation coefficient of samples reached the peak. When it was less than 200 kPa, the secondary consolidation coefficient changed obviously with the increase in load. When the load was greater than 200 kPa, the variation trend of the secondary consolidation coefficient tended to be gentle with the increase in load and finally tended to be constant. With the increase in load, the secondary consolidation coefficient Ca finally approached to a stable value. 3) The value of Ca/Cc of improved organic soil varied from 0.042 to 0.1 under various loads. In this article, the secondary consolidation characteristics of organic soil modified by bio-enzyme were studied. The secondary consolidation strain can be predicted by the established rheological model parameter equations.

Publisher

Frontiers Media SA

Subject

Materials Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3