Mechanical properties of PVC-based wood–plastic composites effected by temperature

Author:

Li Jile,Huo Ruili,Liu Wenyi,Fang Hai,Jiang Lei,Zhou Ding

Abstract

Compared with traditional wooden building materials, polyvinyl chloride (PVC)-based wood–plastic composites have advantages of good weather resistance, easy processing capability, energy conservation, and environmental protection and have been popular and widely used in the field of civil construction and garden engineering in recent years. Due to the difference in the thermal expansion coefficient between its component materials, the stress will accumulate in the wood–plastic composites (WPCs) when the temperature changes, which will affect the mechanical properties of the material and structure. In order to explore the changes in mechanical properties of WPCs under different temperatures and achieve a safe and controllable design, the differential scanning calorimetry (DSC) method was used in this study to measure the glass transition temperature of the WPC between 78.45°C and 88.30°C, and the glass transition temperature (Tg) was about 83.54°C. The tensile, compressive, and bending mechanical property tests of PVC-based wood–plastic composite materials under different temperatures were carried out in the ambient temperature chamber to obtain the failure characteristics, the load–displacement curve, and the influence of temperature on their mechanical properties.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province for Distinguished Young Scholars

Publisher

Frontiers Media SA

Subject

Materials Science (miscellaneous)

Reference37 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3