Benchmark Simulations of Dense Suspensions Flow Using Computational Fluid Dynamics

Author:

Haustein M. A.,Eslami Pirharati M.,Fataei S.,Ivanov D.,Jara Heredia D.,Kijanski N.,Lowke D.,Mechtcherine V.,Rostan D.,Schäfer T.,Schilde C.,Steeb H.,Schwarze R.

Abstract

The modeling of fresh concrete flow is still very challenging. Nevertheless, it is of highest relevance to simulate these industrially important materials with sufficient accuracy. Often, fresh concrete is assumed to show a Bingham-behavior. In numerical simulations, regularization must be used to prevent singularities. Two different regularization models, namely the 1) Bi-viscous, and 2) Bingham-Papanastasiou are investigated. Those models can be applied to complex flows with common simulation methods, such as the Finite Volume Method (FVM), Finite Element Method (FEM) and Smoothed Particle Hydrodynamics (SPH). Within the scope of this investigation, two common software packages from the field of FVM, namely Ansys Fluent and OpenFOAM, COMSOL Multiphysics (COMSOL) from FEM side, and HOOMD-blue.sph from the field of SPH are used to model a reference experiment and to evaluate the modeling quality. According to the results, a good agreement of data with respect to the velocity profiles for all software packages is achieved, but on the other side there are remarkable difficulties in the viscosity calculation especially in the shear- to plug-flow transition zone. Also, a minor influence of the regularization model on the velocity profile is observed.

Publisher

Frontiers Media SA

Subject

Materials Science (miscellaneous)

Reference44 articles.

1. Simulation of Formwork Filling by Cement Fluid: the Effect of the Formwork Structure on Yield-Stress Fluid;Alfi,2013

2. General Purpose Molecular Dynamics Simulations Fully Implemented on Graphics Processing Units;Anderson;J. Comput. Phys.,2008

3. Transparent Model concrete with Tunable Rheology for Investigating Flow and Particle-Migration during Transport in Pipes;Auernhammer;Mater. Des.,2020

4. Prediction of concrete Pumping Using Various Rheological Models;Choi;Int. J. Concr Struct. Mater.,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3