Wear Behaviors of a Ti-Based Bulk Metallic Glass at Elevated Temperatures

Author:

Cao Fuyang,Huang Yongjiang,He Chao,Fan Hongbo,Wei LiYuan,Ning Zhiliang,Sun Jianfei

Abstract

Bulk metallic glasses (BMGs) often offer excellent physical, chemical, and mechanical properties such as high strength, high hardness, and good wear/corrosion resistance, stemming from their unique atomic configuration. These properties enable them to be a potential engineering material in a range of industrial applications. However, the wear behaviors must be considered in structural applications. Here, the wear tests of a TiZrNiCuBe bulk metallic glass at high temperatures were carried out. As the testing temperature increases, the wear rate of the studied BMG sample gradually decreases and the sample surface becomes smoother. Meanwhile, a higher applied normal load causes a higher wear rate. The wear mechanism evolves from the abrasive to adhesive mode with increase in the testing temperature. The results obtained here could shed more insights into the deformation mechanism of BMGs and thus extend their industrial uses in high-temperature environments.

Funder

National Natural Science Foundation of China-Henan Joint Fund

Publisher

Frontiers Media SA

Subject

Materials Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3