Thermal Transport in Two-Dimensional Heterostructures

Author:

Chen Xue-Kun,Zeng Yu-Jia,Chen Ke-Qiu

Abstract

Heterostructures based on two-dimensional (2D) materials have attracted intense attention in recent decades due to their unusual and tunable physics/chemical properties, which can be converted into promising engineering applications ranging from electronics, photonics, and phononics to energy recovery. A fundamental understanding of thermal transport in 2D heterostructures is crucial importance for developing micro-nano devices based on them. In this review, we summarized the recent advances of thermal transport in 2D heterostructures. Firstly, we introduced diverse theoretical approaches and experimental techniques for thermal transport in low-dimensional materials. Then we briefly reviewed the thermal properties of various 2D single-phase materials beyond graphene such as hexagonal boron nitride (h-BN), phosphorene, transition metal dichalcogenides (TMDs) and borophene, and emphatically discussed various influencing factors including structural defects, mechanical strain, and substrate interactions. Moreover, we highlighted thermal conduction control in tailored nanosystems—2D heterostructures and presented the associated underlying physical mechanisms, especially interface-modulated phonon dynamics. Finally, we outline their significant applications in advanced thermal management and thermoelectrics conversion, and discuss a number of open problems on thermal transport in 2D heterostructures.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Materials Science (miscellaneous)

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3