Performance Investigation of a Solar Thermal Collector Based on Nanostructured Energy Materials

Author:

Zain Muhammad,Amjad Muhammad,Farooq Muhammad,Anwar Zahid,Shoukat Rabia,Bandarra Filho Enio P.,Du Xiaoze

Abstract

The convective and conductive heat transfer between the solar collector and working fluids make photothermal performance limited, and result in a higher rate of heat loss from the surface of the conventional absorber to the surroundings. Direct absorption solar collectors (DASC) are a favorable alternative for their improved photothermal performance. In this study, a simulation based on the performance of a nanostructured solar collector has been carried out using TRNSYS. The connective and conductive heat transfer from direct solar collectors were improved by using nanofluids and three different nanostructured materials, CuO, GO, and ZnO, in this study. The analysis determines the outlet temperature of the working fluids that passed through the direct solar collector. The TRNSYS model consists of a direct solar collector and weather model for Lahore city, the simulations were performed for the whole year for 1,440 h. The stability of these nanostructured materials in the water was investigated by using a UV‐Vis spectrophotometer. Various performance parameters of direct solar collectors were determined, such as variation in outlet collector temperature and heat transfer rates. The numerical model is validated with experimental results. A maximum outlet temperature of 63°C was observed for GO-based nanofluids. The simulation results show that for the whole year, nanofluids improved the performance of direct solar collectors. Significant improvements in the heat transfer rate of 23.52, 21.11, and 15.09% were observed for the nanofluids based on nanostructures of CuO, ZnO, and GO respectively, as compared to water. These nanostructured energy materials are beneficial in solar-driven applications like solar desalination, solar water, and space heating.

Publisher

Frontiers Media SA

Subject

Materials Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3