Numerical Development of Heat Transfer Coefficient Correlation for Spray Cooling in Continuous Casting

Author:

Ma Haibo,Silaen Armin,Zhou Chenn

Abstract

The desire to remain competitive and continuously produce high quality and high strength steel at the maximum production rate in continuous casting requires dynamic control over the spray cooling rate. Efficient and uniform heat removal without cracking or deforming the slab during spray cooling is critical. The challenge is to obtain accurate Heat Transfer Coefficient (HTC) on the slab surface as boundary condition for solidification calculations. Experiment based HTC correlations are limited to handful operating conditions and they might fail when changes occur. The current study presents a numerical model for spray cooling featuring the simulation of atomization and droplet impingement heat transfer in continuous casting. With the aid of high-performance computer, parametric studies were performed and the results were converted into mathematically simple HTC correlations as a function of essential operating parameters. Finally, a Graphic User Interface (GUI) was developed to facilitate future applications of the correlations. The HTC prediction is stored in the versatile comma-separated values (csv) format and it can be directly applied to solidification calculations. The proposed numerical methodology should benefit the steel industry by expediting the development process of HTC correlations and can further improve the accuracy of the existing casting control systems.

Publisher

Frontiers Media SA

Subject

Materials Science (miscellaneous)

Reference40 articles.

1. Deformation behaviors of a liquid droplet impinging onto hot metal surface;Akao;Trans. ISIJ,1980

2. The Leidenfrost point: experimental study and assessment of existing models;Bernardin;J. Heat Tran.,1999

3. Selective catalytic reduction of nitrogen oxides in motor vehicles: investigation of the injection of urea water solution;Birkhold,2007

4. Dynamic simulation of slab centerline behavior of the continuous casting process during large speed transitions and their effects on slab internal quality;Blazek,2013

5. Theory and application on spray cooling of hot surfaces;Bolle;Mult. Scien. Techn.,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3