Understanding the high-temperature corrosion behavior of zirconium alloy as cladding tubes: a review

Author:

Tang Yan,Liao Jingjing,Yun Di

Abstract

Operated under extreme conditions, corrosion occurs between zirconium alloy cladding tubes and the coolant in the primary loop of pressurized water reactors (PWRs), contributing to a reduction in the effective metallic material thickness. Therefore, understanding the corrosion behavior of zirconium alloy is vital to both raising the burnup of PWR and the improvement of safety properties of these reactors. During the past decades, extensive investigation was conducted with various conditions, such as changing corrosion temperatures and alloying elements, but contradiction persists and universal conclusion remain elusive. In the present work, a variety of research results that focused on corrosion kinetics, microstructural evolution, and the influence of alloying elements were integrated and summarized, so that a valuable reference can be provided to further research.

Publisher

Frontiers Media SA

Reference124 articles.

1. Growth kinetics of second phase particles in N36 zirconium alloy: Zr–Sn–Nb–Fe;Aldeen;J. Mater. Res. Technol.,2022

2. 5.03 corrosion of zirconium alloys;Allen;Comprehensive Nuclear Materials

3. The solubility of tin in α and β zirconium below 1000°C;Arias;J. Nucl. Mater.,1983

4. Oxidation properties of Zr–Nb alloys at 500–600°C under low oxygen potentials;Arima;Corros. Sci.,2004

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3