In-house vs. commercial boron-doped diamond electrodes for electrochemical degradation of water pollutants: A critical review

Author:

Brosler Priscilla,Girão Ana Violeta,Silva Rui F.,Tedim João,Oliveira Filipe J.

Abstract

Boron-doped diamond (BDD) electrodes are eco-friendly and widely used in efficient water remediation through electrochemical advanced oxidation processes (EAOPs). These anodes can completely mineralize a wide range of pollutants, only requiring electrical energy. Over the last 2 decades, numerous commercially available BDD electrodes have emerged, but little is known about their electrooxidation performance, particularly if compared to laboratory-produced anodes by different research groups. In this critical review, a comparison between in-house-made and commercially available BDD electrodes based on a systematic literature review (SLR) is carried out. SLR was quite useful in locating and selecting the scientific publications relevant to the topic, enabling information gathering on dissemination, growth, and trends in the application of BDD electrodes in the degradation of water pollutants. More specifically, data concerning the origin of the employed BDD electrodes, and their physicochemical properties were extracted from a thorough selection of articles. Moreover, a detailed analysis of the main parameters affecting the BDD electrodes’ performance is provided and includes selection and pre-treatment of the substrate material, chemical vapor deposition (CVD) method, deposition parameters, characterization methods, and operational conditions. This discussion was carried out fully based on the numerous performance indicators found in the literature. Those clearly revealed that there are only a few analogous points across works, demonstrating the challenge of establishing an accurate comparison methodology. In this context, we propose a figure-of-merit equation which aims at normalizing BDD degradation results for a specific contaminant, even if working under different experimental conditions. Two case studies based on the degradation of solutions spiked with phenol and landfill leachate treatment with commercial or in-house-made BDD electrodes are also presented. Although it was not possible to conclude which electrode would be the best choice, we propose a set of guidelines detailing a consistent experimental procedure for comparison purposes in the future.

Funder

Fundação para a Ciência e a Tecnologia

Publisher

Frontiers Media SA

Subject

Materials Science (miscellaneous)

Reference234 articles.

1. Pilot scale anodic oxidation of pretreated vinasse using boron doped diamond electrodes;Alvarez Pugliese;CT&F - Cienc. Tecnol. Futuro,2016

2. Bibliometria: Evolução histórica e questões atuais;Araújo;Em Questão,2006

3. Doping level influence on chemical surface of diamond electrodes;Azevedo;J. Phys. Chem. Solids,2013

4. Sp3/sp2 character of the carbon and hydrogen configuration in micro- and nanocrystalline diamond;Ballutaud;Diam. Relat. Mater.,2008

5. Porous boron doped diamond for dopamine sensing: Effect of boron doping level on morphology and electrochemical performance;Baluchová;Electrochimica Acta,2019

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3