Author:
Huynh Thi My Duyen,Nguyen Duy Khanh,Nguyen Thi Dieu Hien,Dien Vo Khuong,Pham Hai Duong,Lin Ming-Fa
Abstract
The essential properties of monolayer HfX2 (X = S, Se, or Te) are fully explored by first-principles calculations. The optimal lattice symmetries, sublattice buckling, electronic energy spectra, and density of states are systematically investigated. Monolayer HfS2, HfSe2, and HfTe2, respectively, belong to middle-gap semiconductor, narrow-gap one and semimetal, with various energy dispersions. Moreover, the van Hove singularities (vHs) mainly arise from the band-edge states, and their special structures in the density of states strongly depend on their two or three-dimensional structures and the critical points in the energy-wave-vector space. The above-mentioned theoretical predictions are attributed to the multi-orbital hybridizations of [dx2−y2, dxy, dyz, dzx, dz2]–[s, px, py, pz] in the Hf-X chemical bonds. The diversified physical phenomena clearly indicate a high potential for applications, as observed in MoS2-related emergent materials ions.
Subject
Materials Science (miscellaneous)
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献