Bio-graded recycling for hot asphalt mixtures with high RAP content considering freeze-thaw

Author:

He Liqiang,Li Yafei,Xia Moxuan,Liu Rui,Gu Qiutai,Luo Xiangyu,Zhang Xing

Abstract

This paper investigates the effects of freeze-thaw cycles on the performance of asphalt mixtures containing 60% rejuvenated asphalt pavement (RAP). Two rejuvenation processes, traditional and bio-graded recycling, are compared regarding high-temperature performance, low-temperature performance, dynamic stability, flexural tensile strength, split tensile strength, water stability, and fatigue performance after various freeze-thaw cycles. The results indicate that bio-graded rejuvenation, compared to traditional rejuvenation, effectively enhances the high-temperature performance, low-temperature performance, water stability, and fatigue performance after freeze-thaw cycles. Both rejuvenations initially meet the dynamic stability requirements but show a decreasing trend with increasing freeze-thaw cycles, with traditional rejuvenation exhibiting more severe degradation. The flexural tensile strength initially exceeds that of conventional asphalt mixtures but decreases significantly with freeze-thaw cycles, especially in traditional rejuvenation. Additionally, freeze-thaw action increases the internal void ratio, affecting water stability and anti-freezing ability, particularly in traditional rejuvenated mixtures. These findings underscore the impact of freeze-thaw cycles on rejuvenated asphalt mixtures and emphasize the importance of innovative rejuvenation techniques for sustainable pavement.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3