Porous and highly responsive polymeric fabricated nanometrices for solubility enhancement of acyclovir; characterization and toxicological evaluation

Author:

Umar Ayesha,Barkat Kashif,Hussain Shah Syed Nisar,Ashraf Muhammad Umer,Badshah Syed Faisal,Ali Akhtar,Anjum Irfan,Bin Jardan Yousef A.,Nafidi Hiba-Allah,Dauelbait Musaab,Bourhia Mohammed

Abstract

Solubility is one of the major factors which affects several therapeutic mioeties in terms of their therapeutic efficacy. In the current study, we presented a porous and amorphous nanometrices system for the enhancement of the solubility of acyclovir. The polymeric network was fabricated by crosslinking polyethylene glycol-6000, polycaprolactone, and β-cyclodextrin with methacrylic acid by optimizing free radical polymerization technique using methylene bisacrylamide as a crosslinking agent. The formulated nanometrices were then characterized by zetasizer, FTIR, PXRD, Scanning electron microscopy, Thermogravimetric analysis, swelling, sol-gel fraction, drug loading, stability, solubility, and in-vitro dissolution analysis. Since the formulated system has to be administered orally, therefore to determine the in-vivo biocompatibility, nanometrices were administered orally to experimental animals. SEM images provided a rough and porous structure while PXRD showed an amorphous diffractogram of the unloaded and loaded nanometrices. Moreover, the particle size of the optimum loaded formulation was 25 nm higher than unloaded nanometrices due to the repulsion of the loaded drug. A significant loading of the drug with enhanced solubility and dissolution profiles was observed for the poorly soluble drug. The dissolution profile was quite satisfactory as compared to the marketed brand of drug which depicted that the solubility of the drug has been enhanced. Toxicity study conducted on rabbits confirmed the biocompatibility of the nanometrices. The systematic method of preparation, enhanced solubility and high dissolution profile of the formulated nanometrices may be proved as a promising technique to enhance the solubility of poorly aqueous soluble therapeutic agents.

Publisher

Frontiers Media SA

Subject

Materials Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3