Effects of Titanium Corrosion Products on In Vivo Biological Response: A Basis for the Understanding of Osseointegration Failures Mechanisms

Author:

Biguetti Claudia Cristina,Cavalla Franco,Fonseca Angélica Cristina,Tabanez Andre Petenucci,Siddiqui Danyal A.,Wheelis Sutton E.,Taga Rumio,Fakhouri Walid D.,Silva Renato Menezes,Rodrigues Danieli C.,Garlet Gustavo Pompermaier

Abstract

Corrosion resistance is a key feature of titanium biocompatibility. However, Ti surfaces exposed to critical environments (such as, chronic infection and inflammation) can undergo corrosion processes in vivo, leading to an unfavorable biological response and clinical failure, which remains poorly explored. In this study, we characterized an experimental model to replicate the surface features of Ti corrosion process observed within in vivo failures, and the cellular, tissue and molecular events associated with corroded Ti surface implantation into subcutaneous and bone tissue of C57Bl/6 mice. Prior to in vivo implantation, commercially pure Ti Commercially pure titanium and Ti–6Al–4V alloy (Ti64) specimens were exposed to electrochemical polarization in 30% citric acid, while being polarized at 9 V against a saturated calomel electrode for 20 min. The electrochemical attack induced accelerated corrosion on both Ti-based specimens, producing structural and chemical changes on the surface, comparable to changes observed in failed implants. Then, microscopy and molecular parameters for healing and inflammation were investigated following control and corroded Ti implantation in subcutaneous (cpTi disks) and oral osseointegration (Ti64 screws) models at 3, 7, 14 and 21 days. The host response was comparatively evaluated between control and corroded Ti groups by microCT (bone), histology (H&E, histomorphometry, immunostaining and picrosirius red), and real-time PCR array for inflammatory and healings markers. Corroded cpTi disks and Ti64 screws induced a strong foreign body response (FBR) from 3 to 21 days-post implantation, with unremitting chronic inflammatory reaction lasting up to 21 days in both subcutaneous and osseointegration models. In the subcutaneous model, FBR was accompanied by increased amount of blood vessels and their molecular markers, as well as increased TRAP+ foreign body giant cell count. In the osseointegration model, failures were identified by an osteolytic reaction/bone loss detected by microCT and histological analyses. The corroded devices were associated with a dominant M1-type response, while controls showed transient inflammation, an M2-type response, and suitable healing and osseointegration. In conclusion, corrosion of Ti-based biomaterials induced exacerbated inflammatory response in both connective tissue and bone, linked to the upregulation of fibrosis, pro-inflammatory and osteoclastic markers and resulted in unfavorable healing and osseointegration outcomes.

Funder

Fundação de Amparo à Pesquisa do Estado de São Paulo

National Institute of Dental and Craniofacial Research

Publisher

Frontiers Media SA

Subject

Materials Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3