Statistical experiment analysis of wear and mechanical behaviour of abaca/sisal fiber-based hybrid composites under liquid nitrogen environment

Author:

L Natrayan,Surakasi Raviteja,Paramasivam Prabhu,Dhanasekaran Seshathiri,S. Kaliappan,Patil Pravin P.

Abstract

Composite materials are increasingly replacing synthetic fiber combinations in various applications. However, certain extreme environments on Earth and in space require structures to operate under low temperatures, specifically cryogenic conditions, which can significantly affect material reactions. Therefore, the main focus of this study is to develop and evaluate hybridized biocomposites, specifically assessing their tensile, bending, and impact strengths in a controlled liquid nitrogen environment (77 K). Utilizing the Taguchi optimization method, the statistical analysis of wearing characteristics was carried out utilizing cryogenic treatment hours, load, sliding distance, and weight percentage of abaca and sisal fibers. When 20 percent abaca and sisal were mixed, tensile performance increased from 28.96 to 36.58 MPa. Likewise, the same mixture increased bending strength from 59.63 to 75.68 MPa, and impact strength improved from 59.36 to 71.25 J/m. The cryogenic treatment of composite materials for 15–30 min improved the mechanical characteristics of the materials by enhancing the binding between reinforcements and substrate. The Taguchi 27 test outcomes showed a decreased friction coefficient of 7.79 × 105 mm3/Nm in the 10th trial with 30 min of cold working, 10% hybrid fibers, 600 m slide distance, and a 4 N load combination. Frictional coefficient data indicated the lowest rate during the third experiment with 15 min of cryogenic treatment, 10% hybrid fibers, 1,500 m slide length, and a 12 N load combination. The microstructural analysis of the fractured specimen was evaluated by scanning electron microscopy. Finally, such composite materials are employed in liquid propellant tanks, satellites, spaceships, rocket constructions, aeroplane components at cruising altitudes, and other applications.

Publisher

Frontiers Media SA

Subject

Materials Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3