Bioactive 3D Scaffolds for the Delivery of NGF and BDNF to Improve Nerve Regeneration

Author:

Sandoval-Castellanos Ana M.,Claeyssens Frederik,Haycock John W.

Abstract

Peripheral nerve injury is an important cause of disability, that can hinder significantly sensory and motor function. The clinical gold standard for peripheral nerve repair is the use of autografts, nevertheless, this method has limitations such as donor site morbidity. An emerging alternative to autografts are nerve guide conduits, which are used to entubulate the severed nerve and provide guidance for the directed regeneration of the nerve tissue. These nerve guide conduits are less effective than autografts, and to enhance their performance the incorporation of neurotrophins can be considered. To enable optimal nerve regeneration, it is important to continuously stimulate neurite outgrowth by designing a delivery system for the sustained delivery of neurotrophins. The aim of this study was to develop a novel bioactive surface on electrospun fibres to supply a sustained release of heparin bound NGF or BDNF electrostatically immobilised onto an amine functionalized surface to encourage neurite outgrowth and Schwann cell migration. The bioactive surface was characterised by XPS analysis and ELISA. To assess the effect of the bioactive surface on electrospun fibres, primary chick embryo dorsal root ganglia were used, and neurite outgrowth and Schwann cell migration were measured. Our results showed a significant improvement regarding nerve regeneration, with the growth of neurites of up to 3 mm in 7 days, accompanied by Schwann cells. We hypothesize that the physical guidance provided by the fibres along the sustained delivery of NGF or BDNF created a stimulatory environment for nerve regeneration. Our results were achieved by immobilising relatively low concentrations of neurotrophins (1 ng/ml), which provides a promising, low-cost, and scalable method to improve current nerve guide conduits.

Funder

Consejo Nacional de Ciencia y Tecnología

Engineering and Physical Sciences Research Council

Publisher

Frontiers Media SA

Subject

Materials Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3