Biomimetic spray coating for fruit preservation based on UiO-1 67 metal–organic framework nanozyme

Author:

Li Jie,Wang Donglin,Liu Yuhang

Abstract

The application of edible coatings for preparing composite antibacterial spray coatings for fruit preservation by incorporating antibacterial nanoparticles has gained increasing attention. Chitosan (CS) is a natural polysaccharide used as an edible coating to preserve fruit; it has properties such as reducing water loss, enhancing appearance, and improving mechanical properties. By combining it with antibacterial material, it can reduce fruit microorganisms. Cerium (Ce) has excellent antibacterial activity combined with the advantages of safety and low cost. Therefore, this study proposes a biocatalytic spray coating for fruit preservation using a CS composite metal–organic framework (CS@Ce-MOF) with strawberry as a model fruit. CS@Ce-MOFs are superior to Ce-MOFs in the aqueous stability of their chemical structure, inoxidizability, antibacterial duration, and validity. The well-characterized CS@Ce-MOF was verified to simultaneously mimic good oxidase- and apyrase-like activities. CS@Ce-MOF biocatalytic spray coating demonstrated excellent antibacterial properties against two common foodborne pathogens: Escherichia coli and the Gram-positive bacterium Staphylococcus aureus, with high killing rates of up to 94.5%. This is due to the unique structure of the CS@Ce-MOF composite, which presents a large surface area for contact with pathogens and enhances the catalytic activity of the incorporated cerium oxide nanoparticles, leading to efficient sterilization. Furthermore, the scavenging rate of DPPH and ABTS free radicals is more than 80%, indicating that CS@Ce-MOF has excellent antioxidant properties. Moreover, CS@Ce-MOF minimized the weight loss and firmness of strawberries and bananas over 7 days of ambient storage. The use of such a biocatalytic spray coating has enormous potential for preserving the quality and safety of fresh produce, reducing food waste, and promoting sustainable agricultural practices.

Publisher

Frontiers Media SA

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3