Role of cross-diagonal reinforcements in lieu of seismic confining stirrups in the performance enhancement of square RC columns carrying axial load subjected to close-range explosive loading

Author:

Anas S. M.,Alam Mehtab,Isleem Haytham F.,Najm Hadee Mohammed,Sabri Sabri Mohanad Muayad

Abstract

Exposure of building infrastructures to accidental or intentional blasts is an extreme load condition that may cause irreparable damage leading to the collapse of buildings. Columns being principal elements are the most important for the stability and safety of the buildings under accidental explosions and subversive blast events and therefore attract the attention of structural engineers and researchers. Some recent examples are the Beirut seaport explosion (August 2020), the explosion at an ammunition warehouse in Ryazan City of Russia (October 2020), the gas explosion in China’s Hubei Province (June 2021), a blast at a chemical factory on the outskirts of Bangkok (July 2021), and the explosion on a container ship docked at Dubai’s Jebel Ali Port (July 2021). In the crises like ongoing conflict between Russia and Ukraine, the enhanced response of the principal components of a structure may save the life of the building users by limiting severe damage to the structure. In this study, three experimentally tested 3000-mm-long normal strength concrete columns, 300mm x 300mm, provided with (i) conventional reinforcement, (ii) seismic reinforcements over top and bottom confining regions (600 mm), and (iii) seismic reinforcement over confining and mid-height regions, carrying an axial working load of 950 kN available in the literature, are modeled in the ABAQUS 2020 code and are subjected to 82 kg TNT close-range explosive load at a scaled distance 1.0 m/kg1/3using the software’s explicit module. In addition to this, one column with seismic reinforcement over its entire length has been considered and modeled. The concrete damage plasticity model is explored for nonlinear elastic and inelastic behaviors, degradation of stiffness, and loading rate effect on concrete. Following the validation of the numerical models, the seismic reinforcements of the columns have been replaced by the cross-diagonal reinforcements between the conventional stirrups with the same axial load. Blast performance of the columns with the seismic reinforcements and with replaced diagonal reinforcements is critically examined and discussed. The results show that the application of cross-diagonal reinforcements as a replacement for the seismic reinforcements enhances the blast resistance of the reinforced concrete column significantly by reducing the damage and displacement.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

Frontiers Media SA

Subject

Materials Science (miscellaneous)

Reference77 articles.

1. 2020 Concrete-damaged plasticity model, explicit solver, three dimensional solid element library ABAQUS DS-SIMULIA User Manual2020

2. Near-field explosion effects on the behaviour of reinforced concrete columns: A numerical investigation;Abladey;Int. J. Prot. Struct.,2014

3. Behaviour of C-FRP laminate strengthened masonry and unreinforced masonry compound walls under blast loading, Afghanistan scenario;Ahmadi;Int. J. Mason. Res. Innovation,2022

4. Blast performance of RCC slab and influence of its design parameters;Ahmadi,2021

5. Quantitative resistance assessment of sfrp-strengthened RC bridge columns subjected to blast loads;Alsendi;J. Perform. Constr. Facil.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3