Review of the VO2 smart material applications with emphasis on its use for spacecraft thermal control

Author:

Haddad Emile,Kruzelecky Roman V.,Murzionak Piotr,Jamroz Wes,Tagziria Kamel,Chaker Mohamed,Ledrogoff Boris

Abstract

It is surprising to see the wide range and versatile potential of applications of the VO2, due to its transition from a semiconductor phase at low temperature, to a metallic state at high temperature. Although this transition’s atomic mechanism is not yet well understood, the tuneability is very reproducible experimentally and can be monitored by various triggering schemes, not only by heating/cooling but also by applying a voltage, pressure, or high power single fast photonic pulse. Many of the recent applications use not only the low-temperature phase and the high-temperature phase, but also the transition slope to monitor a specific parameter. The paper starts with a summary of the VO2 thin film deposition methods and a table presenting its recent proposed applications, some of which our team had worked on. Then the development characterization and application of the VO2 as a smart thermal radiator is provided along with the recent progress. The experimental results of the emissivity were measured at low temperature and high temperature, as well as during the transition in vacuum based on the thermal power balance. These measurements were compared with those deduced from an average of Infrared Reflectance (2–30 µm) weighed with the blackbody reflection spectrum. The roadmap is to try alternatives of the multilayers in order to increase the emissivity tuneability, increase the device dimensions, have an easier application on space surfaces, while lowering cost.

Publisher

Frontiers Media SA

Subject

Materials Science (miscellaneous)

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3