Combustion and Thermal Properties of Flame Retardant Polyurethane Foam With Ammonium Polyphosphate Synergized by Phosphomolybdic Acid

Author:

Xu Zhirong,Xu Zihui,Tao Ran,Mao Liangchen,Zhan Jing,Xiao Junfeng,Yu Tao

Abstract

Phosphomolybdic acid (PMA) as a synergist was added into polyurethane (PU) rigid foam with ammonium polyphosphate (APP) to improve its flame retardancy and thermal stability. The combustion performance of PU was studied by limiting oxygen index (LOI), UL-94, and a cone calorimeter. The thermal degradation behavior of PU was determined by thermogravimetric analysis (TG) and thermogravimetric infrared spectroscopy (TG-IR). Experimental results showed that the introduction of PMA could further improve the flame retardant performance of PU/APP composites and significantly increase the amount of carbon residue at high temperatures. Adding 3wt% PMA to PU containing 12wt% APP could make the foam pass UL-94 V-0, increase the carbon residue at 800°C by 69.16% in the air atmosphere, and decrease the THR by 24.62% compared to those of PU/15APP. TG-IR results showed that the presence of PMA reduced the production of small-molecule gas-phase products. As for the mechanical properties of PU composites, the addition of PMA influences their density and compressive strength obviously. The results suggest that PMA and APP have good synergistic flame retardancy on PU and can reduce its fire risk.

Publisher

Frontiers Media SA

Subject

Materials Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3