Deep Generative Models for Materials Discovery and Machine Learning-Accelerated Innovation

Author:

Fuhr Addis S.,Sumpter Bobby G.

Abstract

Machine learning and artificial intelligence (AI/ML) methods are beginning to have significant impact in chemistry and condensed matter physics. For example, deep learning methods have demonstrated new capabilities for high-throughput virtual screening, and global optimization approaches for inverse design of materials. Recently, a relatively new branch of AI/ML, deep generative models (GMs), provide additional promise as they encode material structure and/or properties into a latent space, and through exploration and manipulation of the latent space can generate new materials. These approaches learn representations of a material structure and its corresponding chemistry or physics to accelerate materials discovery, which differs from traditional AI/ML methods that use statistical and combinatorial screening of existing materials via distinct structure-property relationships. However, application of GMs to inorganic materials has been notably harder than organic molecules because inorganic structure is often more complex to encode. In this work we review recent innovations that have enabled GMs to accelerate inorganic materials discovery. We focus on different representations of material structure, their impact on inverse design strategies using variational autoencoders or generative adversarial networks, and highlight the potential of these approaches for discovering materials with targeted properties needed for technological innovation.

Funder

U.S. Department of Energy

Publisher

Frontiers Media SA

Subject

Materials Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3