A framework for computer-aided high performance titanium alloy design based on machine learning

Author:

An Suyang,Li Kun,Zhu Liang,Liang Haisong,Ma Ruijin,Liao Ruobing,Murr Lawrence E.

Abstract

Titanium alloy exhibits exceptional performance and a wide range of applications, with the high performance serving as the foundation for the development. However, traditional material design methods encounter numerous calculations and experimental trial-and-error processes, leading to increased costs and decreased efficiency in material design. The data-driven model presents an intriguing alternative to traditional material design methods by offering a novel approach to expedite the materials design process. In this study, a framework for computer-aided design high performance titanium alloys based on machine learning is proposed, which constructs an intelligent search space encompassing various combinations of 18 elements to facilitate alloy design. Firstly, a proprietary dataset was constructed for titanium alloy materials using feature design and a combination of unsupervised and supervised feature engineering methods. Secondly, six machine learning algorithms were employed to establish regression models, and the hyperparameters of each algorithm were optimized to improve model performance. Thirdly, the model was screened using five regression algorithm evaluation methods. The results demonstrated that the selected optimized model achieved an R2 value of 0.95 on the verification set and 0.93 on the test set, yielding satisfactory outcomes. Finally, a comprehensive model framework along with an intelligent search methodology for designing high-strength titanium alloys has been established. It is believed that this method is also applicable to other properties of titanium alloys and the optimization of other materials.

Publisher

Frontiers Media SA

Reference49 articles.

1. Titanium for aerospace: rationale and applications;Boyer;Adv. Perform. Mater.,1995

2. Random forests;Breiman;Mach. Learn.,2001

3. The characteristics and application of titanium alloys in ship;Chen;Ship Sci. Technol.,2005

4. Influence of isothermal ω transitional phase-assisted phase transition from β to α on room-temperature mechanical performance of a meta-stable β titanium alloy Ti−10Mo−6Zr−4Sn−3Nb (Ti-B12) for medical application;Cheng;Front. Bioeng. Biotechnol.,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3