Optimized uncertainty propagation across high fidelity taylor anvil simulation

Author:

James Jaylen R.,Sanghvi Meet,Gerlt Austin R. C.,Allaire Douglas,Arroyave Raymundo,Gonzales Manny

Abstract

In computational materials research, uncertainty analysis (more specifically, uncertainty propagation, UP) in the outcomes of model predictions is essential in order to establish confidence in the models as well as to validate them against the ground truth (experiments or higher fidelity simulations). Unfortunately, conventional UP models relying on exhaustive sampling from the distributions of input parameters may be impractical, particularly when the models are computationally expensive. In these cases, investigators must sacrifice accuracy in the propagated uncertainty by down-sampling the input distribution. Recently, a method was developed to correct for these inaccuracies by re-weighing the input distributions to create more statistically representative samples. In this work, the method is applied to computational models for the response of materials under high strain rates. The method is shown to effectively approximate converged output distributions at a lower cost than using conventional sampling approaches.

Funder

Air Force Research Laboratory

Publisher

Frontiers Media SA

Subject

Materials Science (miscellaneous)

Reference42 articles.

1. Low alloy high performance steel;Abrahams

2. The science of cost-effective materials design-a study in the development of a high strength, impact resistant steel;Abrahams

3. A mathematical and computational framework for multifidelity design and analysis with computer models;Allaire;Int. J. Uncertain. Quantif.,2014

4. Integrated computational materials engineering: A perspective on progress and future steps;Allison;JOM,2011

5. A decomposition approach to uncertainty analysis of multidisciplinary systems;Amaral,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3