Assessment of the depth of anesthesia with hidden Markov model based on cardiopulmonary variables

Author:

de Rocquigny Gaël,Dubost Clément,Humbert Pierre,Oudre Laurent,Labourdette Christophe,Vayatis Nicolas,Tourtier Jean-Pierre,Vidal Pierre-Paul

Abstract

BackgroundPrecise monitoring of the Depth of Anesthesia (DoA) is essential to prevent intra-operative awareness (in case of underdosage) or increased post-operative morbi-mortality (in case of overdosage). The recording of a high- frequency multimodal monitoring during general anesthesia (GA) and the capability of classification of dynamic networks should have the potential to help predicting the DoA in a clinical practice. In this study, we aimed at predicting the DoA according four levels (Awake, Loss of Consciousness (LOC), Anesthesia, Return of Consciousness (ROC), Emergence) thanks to a Hidden Markov Model (HMM) relying on four common physiologic variables: Mean Blood Pressure (MBP), Heart Rate (HR), Respiratory Rate (RR), and end-expiratory concentration of sevoflurane (AAEt).MethodsAfter induction by sufentanil and propofol, the anesthesia was maintained by sevoflurane. We recorded the physiological variables at a high frequency during all the procedure [cardiopulmonary variables, AAEt, 2- channel ElectroEncephaloGraphy (EEG) data, and BIS values]. In the training phase, the different states (Awake, LOC, Anesthesia, ROC, Emergence) were identified according to the reading of the spectrograms of the two EEG channels. However, the prediction with the HMM were only based on the four physiological variables.ResultsOn a dataset consisting of 60 patients under general anaesthesia, results suggested that the HMM had a true positive rate (TPR) for identifying Awake, Anesthesia and Emergence of 88%, 72% and 58%, respectively.ConclusionTo our knowledge, this is the first application of such a model to identify the DoA without relying on EEG data. We suggest that a HMM can help the anesthetist monitoring the DoA out of a set of current physiologic variables without necessity of brain monitoring. The model could be improved by increasing the number of patients in the database and accuracy would probably benefit from adding in the model the data of a single EEG channel.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3