Distinct characteristics of western Pacific atmospheric rivers affecting Southeast Asia

Author:

Yong Yangyang,Liang Ju,Yang Kai

Abstract

The dynamic characteristics of atmospheric rivers (ARs) have been researched over the western North Pacific and East Asia due to their close linkage to disastrous precipitation extremes, while very little attention has been paid to the AR features from the western Pacific to Southeast Asia. This study aims to quantify the climatology, long-term trends and variability of different AR properties from the western Pacific to Southeast Asia using an objective identification algorithm, the ERA5 reanalysis dataset and the APHRODITE precipitation dataset for the period 1951-2015. The results indicate a belt of frequent AR activities from the western Pacific to the Andaman Sea during the boreal autumn-winter season. The long-term trend analyses show a significantly increasing trend in AR frequency and an eastward shift of AR plumes. These dynamic changes contribute to the increasing trend of extreme precipitation amounts in the coastal areas surrounding the South China Sea. The intraseasonal variability of the AR associated with the Madden-Julian oscillation (MJO) shows a pronounced enhancement of AR activity in the MJO phase-2 to phase-3 due to the steeper gradient of low-level geopotential height between the Northwestern Pacific and the tropical Indian Ocean. The modulation is partly explained by the enhanced MJO convection and the adiabatic heating in the vicinity of the trough of the 200-500 hPa geopotential thickness of the region. This study shows that ARs are important mechanisms behind the climatology, trends and variability of the regional precipitation in Southeast Asia. This study implies that more attention is required toward the dynamics of these tropical weather systems, particularly for their interactions with other synoptic processes and their response to future climate warming.

Funder

Natural Science Foundation of Guangxi Province

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3