Numerical study of the water-sediment regulation scheme (WSRS) impact on suspended sediment transport in the Yellow River Estuary

Author:

Jia Wenfei,Yi Yujun

Abstract

IntroductionThe transport of suspended sediment plays an important role in regulating erosion-accretion in estuaries. The Yellow River, the second longest river in China, which has a large amount of sediment and contributes sediment to the Yellow River Estuary (YRE) every year. The water and sediment discharge patterns in the lower reaches of the Yellow River have experienced significant changes over recent decades. In particular, the water-sediment regulation scheme (WSRS) of the Xiaolangdi Reservoir transports large amounts of water and sediment to the YRE within a very short time, causing dramatic changes in the spatiotemporal estuarine sediment dynamics.MethodsIn this study, we presented a coupled numerical model based on FVCOM-SWAVE-SED that considered the highly dynamic sediment variations in the YRE. The sediment distribution and erosion-accretion patterns in the YRE during the WSRS in 2013 were analyzed by the high-resolution model.ResultsThe sediment entering the YRE spread with freshwater, forming a high sediment concentration zone near the river mouth, where most of the sediments were deposited. The sediment dispersal distance was limited by the tidal shear frontal (TSF), and the southeast outspread length of the sediment was slightly larger than the northwest spread. Outside of the YRE, the areas with high flow currents exhibited high erosion. We examined the effects of the main external driving forces (such as waves, tides, and runoff) on the sediment distribution and showed that runoff, tides, and waves were the key factors affecting the sediment distribution of the YRE.ResultsThis study shows that WSRS effectively changes the sediment distribution and erosion condition in the YRE and provides a data for researches on changes in estuarine ecosystems.

Funder

National Science Fund for Distinguished Young Scholars

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3