Benchmarking of automatic quality control checks for ocean temperature profiles and recommendations for optimal sets

Author:

Good Simon,Mills Bill,Boyer Tim,Bringas Francis,Castelão Guilherme,Cowley Rebecca,Goni Gustavo,Gouretski Viktor,Domingues Catia M.

Abstract

Millions of in situ ocean temperature profiles have been collected historically using various instrument types with varying sensor accuracy and then assembled into global databases. These are essential to our current understanding of the changing state of the oceans, sea level, Earth’s climate, marine ecosystems and fisheries, and for constraining model projections of future change that underpin mitigation and adaptation solutions. Profiles distributed shortly after collection are also widely used in operational applications such as real-time monitoring and forecasting of the ocean state and weather prediction. Before use in scientific or societal service applications, quality control (QC) procedures need to be applied to flag and ultimately remove erroneous data. Automatic QC (AQC) checks are vital to the timeliness of operational applications and for reducing the volume of dubious data which later require QC processing by a human for delayed mode applications. Despite the large suite of evolving AQC checks developed by institutions worldwide, the most effective set of AQC checks was not known. We have developed a framework to assess the performance of AQC checks, under the auspices of the International Quality Controlled Ocean Database (IQuOD) project. The IQuOD-AQC framework is an open-source collaborative software infrastructure built in Python (available from https://github.com/IQuOD). Sixty AQC checks have been implemented in this framework. Their performance was benchmarked against three reference datasets which contained a spectrum of instrument types and error modes flagged in their profiles. One of these (a subset of the Quality-controlled Ocean Temperature Archive (QuOTA) dataset that had been manually inspected for quality issues by its creators) was also used to identify optimal sets of AQC checks. Results suggest that the AQC checks are effective for most historical data, but less so in the case of data from Mechanical Bathythermographs (MBTs), and much less effective for Argo data. The optimal AQC sets will be applied to generate quality flags for the next release of the IQuOD dataset. This will further elevate the quality and historical value of millions of temperature profile data which have already been improved by IQuOD intelligent metadata and observational uncertainty information (https://doi.org/10.7289/v51r6nsf).

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3